GIROJ's Typhoon Loss Model

The Overview of GIROJ's Typhoon Loss Model

 GIROJ's Typhoon Loss Model estimates typhoon damage by the following two types of simulations.

I. Historical Typhoon Simulation

A simulation that replicates the typhoons that hit and brought damage to Japan in the past, followed by assessing the risks if these typhoons recur.

II. Monte Carlo Typhoon Simulation

A simulation that analyzes the typhoons that were replicated by the Historical Typhoon Simulation Model, followed by generating simulated typhoons in order to assess the risks.

The Overview of Estimating Historical Typhoon Losses

W "Historical typhoon losses" means the Loss generated by each Historical Typhoon using the current exposure data

Estimating Historical Typhoon Losses 1. Analyzing Historical Typhoons

 Calculating the parameters that reflect the pressure patterns of each historical typhoon, from historical typhoon data and observation data.

Estimating Historical Typhoon Losses 2. Estimating the Wind Speed

Calculating the peak gust at each location using the analyzed typhoon parameters.

Estimating Historical Typhoon Losses 3. Estimating the Losses

Estimate losses by peak gust at each location and relationships between the peak gust and fragility, damageability.

The Overview of the Monte Carlo Simulation Model

Monte Carlo Simulation Model 1. Generating the Simulated Typhoons

 Calculating the typhoon parameters from historical typhoon data and weather observation data.

In addition, obtaining historical atmosphere data from Reanalysis data.

Monte Carlo Simulation Model 1. Generating the Simulated Typhoons

Deriving PDFs using the calculated typhoon parameters and obtained atmosphere data.

Parameters			Probability Distribution	Remarks
Annual Number of Typhoons	п	(pcs)	Poisson Distribution	per month, per area
Generation Position			Empirical Distribution	per month, per area
Upper Sky Wind Direction	θ	(rad)	Wrapped-Laplace Distribution	pre month, per latitude (correlation between the latitudes considered)
Upper Sky Wind Speed	v	(m/s)	an Asymmetric Conversion of a Normal Distribution (converted by a Box-Cox Transformation)	per month, per latitude, per wind direction (correlation between the latitudes considered)

Parameters for generating the typhoon and creating the tracks

Parameters used for the landfall

Parameters			Probability Distribution	Remarks
Central Pressure Difference	ΔP	(hPa)	Poisson Distribution	per area
Radius of Maximum Wind Speed	rm	(km)	Log- Normal Distribution	per area

Transition of the parameters after the landfall

Parameters			Function	Remarks
Central Pressure Difference	ΔP	(1/h)	exponential	per area
Radius of Maximum Wind Speed	rm	(%/h)	exponential	per area

Monte Carlo Simulation Model 1. Generating the Simulated Typhoons

Generating simulated typhoons based on the PDFs of several typhoon parameters.

Monte Carlo Simulation Model 2. Estimating the Wind Speed

Calculating the peak gust at each location using the analyzed typhoon parameters.

Monte Carlo Simulation Model 3. Estimate Losses

Estimate losses by peak gust at each location and relationships between the peak gust and fragility, damageability.

Copyright © by General Insurance Rating Organization of Japan, All Rights Reserved.