第Ⅱ章 被災建物の被害関数の作成

本章では、本震や余震で一部損や半損の被害を受けた在来木造建物と鉄筋コンクリート造建物の被災建物について、日本建築防災協会(2003,2001)に基づいて耐力残存率 を設定し、宮腰・他(2005)に倣って地震応答解析手法で被害関数を作成する.また、耐力残存率の建物被害予測結果への感度を確認する.

1. 被災建物の耐力残存率の検討

本節では、日本建築防災協会(2003, 2001)に基づいて、在来木造建物と鉄筋コンク リート造建物の被災建物の耐力残存率を検討する.

1-1. 在来木造建物の被災建物の耐力残存率の検討

日本建築防災協会(2003)は、終局状態に至るまでの荷重-変形関係で囲まれる面積 を建物の保有エネルギーEd、応答による荷重-変形関係で描かれた面積を地震により失 われたエネルギーEhと考え、その残存率によって在来木造建物の耐震性能残存率Rを定 めている(図II-1).具体的には、建物の分類(表II-1)と構造躯体、外装材および内 装材の損傷状況調査結果に基づき推定する最大層間変形角 y_e(表II-2)から表II-3の ように求める.そして、被災度区分による補修・補強の要否の判定において「補修また は補強により復旧するもの」と判定されたもののうち、耐震性能残存率が80より大きい ものは、ほとんど耐力の低下を生じていないことから、補修を行い継続使用してよいと している.

一方で、最大層間変形角と地震保険で用いている一部損と半損との対応を定量的に表 すことは難しいが、本研究では、図Ⅱ-2(井戸田・他、2007)を参考に、一部損の最大 層間変形角を1/200~1/100程度、半損の最大層間変形角を1/100~1/50と仮定する. な お、井戸田・他(2007)が例示する最大層間変形角と被害状況の関係は、表Ⅱ-2に概ね 整合していると考えられる.

さらに,耐震性能残存率Rが耐力残存率と概ね対応すると仮定し,これらから一部損の建物群の耐力残存率の代表値として90%,半損の建物群の耐力残存率の代表値として85%を考える.

図Ⅱ-1 耐震性能の考え方(日本建築防災協会, 2003)

分類	内容
aタイプ	1981年以降に建てられたもの. 1981年以前に建てられたもののうち,内装が大壁構法(廊下など の和室以外の部分が大壁構法を採用しているもの)のもの.
bタイプ	aタイプ以外のもの

表 Ⅱ -1	日本建築防災協会	(2003)	の在来木造建物の分類
	пнехмулша	(2000)	

表Ⅱ-2 日本建築防災協会(2003)の損傷状況からの最大層間変形用の	り推え	定
-------------------------------------	-----	---

部位			最大層間変形角						
		1/200rad	1/120rad	1/60rad	1/45rad	1/30rad	1/20rad		
皈	残留変刑	žį.			1/120rad	1/90rad	1/60rad	1/40rad	
体	筋かい					はらみ	座屈	複数座屈	
	外壁	サイディング 張り		釘の浮き	開口部隅 割れ	開口部隅 割れ拡 大,一部 浮き	開 口 部 隅 割 れ 上 下 に 通 る	開 口 部 隅 割 れ 上 下 に 通 る 複 数	
外装材		ラス下地 モルタル塗り	開口部 隅割れ	開口部隅 割れ拡大	開口部隅 以外にも 割れ	開口部隅 以外の割 れ拡大	平面部分 に割れ	平面部分 に割れ複 数	
	開口部等	<u>\$</u> Ŧ		サッシガ スケット 部分外れ	サッシガ スケット 外れ	サッシク レセント 損傷	サッシク レセント 破壊,ガ ラス破損	サッシク レセント 破壊,ガ ラス破 損,複数	
内装	内壁	クロス貼り等 の大壁	隅部しわ	隅部破 れ,中部 しわ	隅破れ通 る,中間 部破れ	中間部破 れ拡大	石膏ボー ド目地複 数が破れ	石膏ボー ド目地大 部分が破 れ	
材		真壁		柱壁にず れ跡	柱壁隙間	柱壁隙間3 ~5mm	柱壁隙間 5mm以上	柱壁隙間 5mm以上複 数	
	開口部等	× F				障子破れ			

县十屈朋亦亚岛	建物の分類		
取入眉间发形丹	aタイプ	bタイプ	
$\gamma_{e} < 1/120$ rad	100	100	
$1/120$ rad $\leq \gamma_{e} < 1/60$ rad	80	90	
$1/60 \mathrm{rad} \leq \gamma_{e} < 1/45 \mathrm{rad}$	50	75	
$1/45 \mathrm{rad} \leq \gamma_{e} < 1/30 \mathrm{rad}$	35	60	
$1/30 \mathrm{rad} \leq \gamma_{e} < 1/20 \mathrm{rad}$	20	30	
$1/20$ rad $\leq \gamma_{e}$	10	10	

表II-3 日本建築防災協会 (2003)の耐震性能残存率R

損害額	傾き	被害状況	被害の様子 ¹¹⁾
0.1 万円 /m²	1/200 以下	漆喰壁などの一部 に軽微なひび割れが 発生するが比較的容 易に修復可能	
0.1~5 万円/m²	1/200 ~ 1/100	土台と基礎の境 目,窓の周辺等にひ び割れが発生する. 修復可能	
5~10 万円/m ²	1/100 ~ 1/50	内外壁の仕上げに 大きなひび割れが入 る.瓦が落ちる.か なりの修復費用が発 生	
全損	1/50 ~ 1/10	内外壁の大きな剥 落. 柱の傾きが大き い. 継続使用不可. 修復は困難.	
全損	-	室内空間がなくな り, 重大な傷害を 負ったり,命を落と す可能性が極めて高 い.	

図Ⅱ-2 最大層間変形角と被害状況の関係の例示(井戸田・他, 2007)

1-2. 鉄筋コンクリート造建物の被災建物の耐力残存率の検討

日本建築防災協会(2001)は、耐震診断で構造性能を表すために用いられる構造耐震 指標の被災前後の比として、鉄筋コンクリート造建物の耐震性能残存率*R*を定義し、そ の値に応じて被災度を区分している(表II-4).構造耐震指標の計算で用いる強度指標 とじん性指標を被災建物に対して評価するのは容易でないことから、強度指標について は、部材強度を損傷度に応じて被災前の値を補正して表すための係数(耐震性能低減係 数)が定められている.また、じん性指標については、被災前の値を用いてよいとされ ており、この場合、構造耐震指標が強度指標とじん性指標の積で表されることから、耐 震性能残存率*R*は被災前後の強度指標の比、すなわち耐力の比を表し、耐力残存率は被 災度に応じて表されることになる.

日本建築防災協会(2001)の被災度区分と地震保険で用いている一部損と半損との対応を定量的に表すことは難しいが、本研究では、過去の地震での被害事例から一部損は

軽微に、半損は小破におおよそ対応すると仮定する.

そこで、これらから、一部損の建物群の耐力残存率の代表値として95%、半損の建物 群の耐力残存率の代表値として90%を考える.

表 II-4 日本建築防災協会 (2001)の構造躯体の耐震性能残存率 Aによる 被害程度の区分

耐震性能残存率R(%)	日本建築防災協会の被災度指標
95 ≦ R	軽微
$80 \leq R < 95$	小破
$60 \leq R < 80$	中破
R < 60	大破
建築物全体または一部の崩壊あるいは落階等により R≒0とみなせるもの	倒壞

2. 被災建物の被害関数の作成

第1節で検討した在来木造建物と鉄筋コンクリート造建物の耐力残存率から,宮腰・ 他(2005)に倣って,在来木造建物と鉄筋コンクリート造建物の被災建物の被害関数を 年代区分別に作成する.

2-1. 宮腰・他(2005)の概要

宮腰・他(2005)は、在来木造建物と鉄筋コンクリート造建物について、1970年以前、 1971年~1980年、1981年以降の3区分を年代区分として、建物モデル(表Ⅱ-5)と耐力 分布(図Ⅱ-3)を設定している.また、1995年兵庫県南部地震の地表地震動で地震応答 解析を行い、被害関数が兵庫県南部地震の実被害データに基づいた被害率曲線に適合す るように、変形クライテリア(ある被災度となる最大層間変形角の閾値)を設定し、国 の災害被害認定統一基準(昭和43年6月14日付総審第115号内閣総理大臣官房審議室長通 達)の全半壊、全壊の被害関数を図Ⅱ-4の方法で作成している.

なお,鉄筋コンクリート造建物を3質点モデルとした理由については,兵庫県南部地 震の実被害データに基づいた被害率曲線を構築したデータにおいて,階数別には3階建 が最も多く,それを中心とした低層建物が大部分を占めていたこと(村尾,1999)を考 慮したためとしている.

パラメータ	在来木造建物	鉄筋コンクリート造建物
質点数 N	2	3
階高h _o [m]	2.8	3. 5
重量(注1)	2/3	1.0 (各階一様)
周期 T[sec]	耐力に応じて設定	$T = 0.02h_0 \cdot N$
剛性分布	耐力に比例	台形分布 (0.5 ^(注 2))
剛性分布 (せん弾力係数)	$1.5^{(\wr \pm 2)}$	A _i 分布
復元力特性	トリリニア+ バイリニア(スリップ) ^(注 3)	トリリニア (武田モデル)
第一折点 層間変形角	1/480	周期から定まる剛性と第一折点耐力か ら定まる
第一折点 耐力	0. 3Qy	Qy/3
降伏時 層間変形角	1/120	1/150
減衰(注4)	5%	2%

表Ⅱ-5 宮腰・他(2005)の建物モデルのパラメータ

(注1) 1階に対する各階の重量の比

(注2) 1階に対する最上階の比

(注3) トリリニアとバイリニアとの比を在来木造建物で6:4

(注4) 瞬間剛性比例型にした

図Ⅱ-3 在来木造建物と鉄筋コンクリート造建物の耐力分布(宮腰・他, 2005)

図Ⅱ-4 地震応答解析に基づいた被害関数の作成手順(宮腰・他, 2005)

2-2. 被災建物の被害関数の作成

損害保険料率算定会(2001)から,地震保険の損害認定における全損と半損は,国の 災害被害認定統一基準(昭和43年6月14日付総審第115号内閣総理大臣官房審議室長通 達)の全壊,半壊と被災度としては同程度であると判断し,宮腰・他(2005)の全半壊, 全壊の被害関数を被災以前の建物の全半損,全損の被害関数として用いる.また,被災 以前の建物の一部損以上の被害関数については,宮腰・他(2005)で作成されていない ため,変形クライテリアを設定し,図Ⅱ-4の方法で被害関数を作成した. これらの被災以前の建物の被害関数に対し,第1節で検討した在来木造建物および鉄 筋コンクリート造建物の被災建物の耐力残存率から,被災建物の被害関数を作成する. 具体的には,耐力残存率で図II-3の耐力分布を補正^(注)し,あわせて建物モデル(表 II-5)と変形クライテリア,被害関数の作成方法(図II-4)から,宮腰・他(2005)に 倣って被災建物の被害関数を作成する.なお,無被害の建物については,耐力残存率を 100%と考え,被災以前の建物の被害関数と同一の被害関数を用いる.

作成した被災建物の被害関数を図Ⅱ-5に示す.

なお,1995年兵庫県南部地震の被害については余震の影響が小さいと考えられる(付録1)ため,宮腰・他(2005)の被害関数には余震の影響が含まれていないと考えられる.

(注) 被災以前の建物の耐力分布の平均値に耐力残存率を乗じた値を,被災建物の耐力分布の平均値とし て用いる.なお,標準偏差は被災以前の建物の耐力分布と同じ値を用いる.

3. 耐力残存率の被害予測結果への感度の確認

第1節では,在来木造建物の一部損の被災建物の耐力残存率の代表値として90%,半 損の被災建物の耐力残存率の代表値として85%,また鉄筋コンクリート造建物の一部損 の被災建物の耐力残存率の代表値として95%,半損の被災建物の耐力残存率の代表値と して90%を考え,第2節ではこれに基づいて被害関数を作成した.

一方で,第1節での耐力残存率の検討は仮定に基づいており,実際の被災建物の耐力 残存率の代表値と異なる可能性が考えられる.

そこで、本節では、被災建物の耐力残存率として第1節の検討とは別の値を考える場合(表Ⅱ-6)に、余震の影響を考慮した建物被害予測結果がどの程度変化するかを確認する.

具体的には、2004年新潟県中越地震を本震として、また本震に対する余震として2004 年新潟県中越地震の余震のうち、マグニチュードの大きい順に3つの余震を想定する. そして、市町村代表点のメッシュについて、図I-1の計算手順で、余震の影響を考慮し た建物被害予測を行い、耐力残存率の被害予測結果への感度を確認する.

検討ケース	在来木造建物		鉄筋コンクリ	リート造建物
	一部損 半損		一部損	半損
ケース1 (耐力低下なし)	100%	100%	100%	100%
ケース2	100%	90%	100%	95%
ケース3	90%	90%	95%	95%
ケース4 (設定値)	90%	85%	95%	90%
ケース5	90%	80%	95%	85%
ケース6	85%	80%	90%	85%

表Ⅱ-6 耐力残存率の検討ケース

3-1.2004年新潟県中越地震の本震と3大余震の断層モデルの設定

(1)本震の断層モデルの設定

堀川 (2005) の断層モデル (表Ⅱ-7) を被害予測に使用する.

表Ⅱ-7 2004年新潟県中越地震の断層モデル(堀川, 2005)

	M_{j}	断層原点		断層上	長さん	幅W	走向 θ	
発生日時		北緯(゜)	東経(゜)	端深さ (km)	(km) (km)	(°)	(°)	
2004/10/23 17:56	6.8	37.1717	138.811	0.2	31	20	34	W 56

(2) 余震の断層モデルの設定

2004年新潟県中越地震では気象庁マグニチュード(以下, M_j) 5.7以上で最大観測震度6弱以上を観測している(表I-1) ことから, M_j 5.7以上の余震(表II-8)を対象に面震源を設定し、うちマグニチュードの大きい3余震の断層モデルを被害予測に使用する.

表Ⅱ-8 2004年新潟県中越地震のMi5.7以上の余震(気象庁, 2007より抜粋)

		震央の		小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小		
発生日時	震央地名	北緯	東経	深さ (km)	Mj	震度
2004/10/23 18:03	新潟県 中越地方	$37^{\circ}\ 21.24'$	138° 59.00′	9.38	6.3	5 強
2004/10/23 18:07	新潟県 中越地方	37°20.89′	138° 51.90′	14.90	5.7	5 強
2004/10/23 18:11	新潟県 中越地方	37° 15.18′	138° 49.77′	11.52	6.0	6 強
2004/10/23 18:34	新潟県 中越地方	37°18.38′	138° 55.80′	14.17	6.5	6 強
2004/10/23 19:45	新潟県 中越地方	37° 17.74′	138° 52.57′	12.35	5.7	6 弱
2004/10/25 06:04	新潟県 中越地方	37° 19.80′	138° 56.81'	15.20	5.8	5 強
2004/10/27 10:40	新潟県 中越地方	37° 17.51′	139°02.00′	11.60	6.1	6 弱
2004/11/08 11:15	新潟県 中越地方	37° 23.76′	139°01.92′	0	5.9	5 強

①地震のタイプの設定

すべて内陸地殻内地震として設定する.

②震源深さの設定

本震の断層モデルとして用いた堀川(2005)の断層モデルの断層中心深さが気象庁の 震央の深さと対応していないため、本震と余震の震源深さの差が気象庁による諸元と対 応するように、余震の断層中心深さを式II-1で定める.ただし、後述の断層長さ、幅の 設定により、余震の断層面の上端深さが地表よりも高くなる場合は、余震の断層面の上 端深さを本震と同じ値に設定する.

$$h_{a,h} = h_{a,k} + (h_{m,h} - h_{m,k})$$
 (式 I-1)
ただし、 $h_{a,h}$:補正した余震の震央深さ
 $h_{a,k}$:気象庁 (2007)の余震の震央深さ
 $h_{m,h}$:堀川 (2005)の本震の断層モデルの断層中心深さ
 $h_{m,k}$:気象庁 (2007)の本震の震央の深さ

③断層面の長さ,幅,走向,傾斜

地震調査研究推進本部(2006)を参考に、次のように計算する.

まず、本震・余震について、それぞれ武村(1990)による陸域の浅い地震の地震モー メント $M_0 \ge M_i$ の関係式(式 II-2)で M_i から M_0 を求める.

次に、Somerville et al. (1999)による地震モーメント M_0 と断層面積Sの関係式(式 II-3)から、本震・余震ともに断層面積Sは地震モーメント M_0 の2/3乗に比例すると考え、本震・余震の M_{0a} ・ M_{0a} と本震の断層面積 S_a から余震の断層面積 S_a を式 II-4で求める.

そして,余震の断層面が本震の断層面と相似形となるように,余震の断層の長さと幅 を式Ⅱ-5により設定する.

$\log M_0 = 1.17 \times M_j + 10.72$	(式Ⅱ-2)
ただし, M_{o} : 地震モーメント (N·m)	
M _j :気象庁マグニチュード	
$S = 2.23 \times 10^{-15} \times M_o^{2/3}$	(式Ⅱ-3)
ただし, <i>S</i> :断層面積 (km ²)	
$M_{ heta}$: 地震モーメント (dyne-cm)	
$S_a = S_m \times (M_{0a} \div M_{0m})^{2/3}$	(式Ⅱ-4)
ただし、 S_m :本震の断層面積 (km ²)	
S_a : 余震の断層面積 (km^2)	
M_{0m} :本震の地震モーメント (N·m)	
$M_{\partial a}$:余震の地震モーメント (N·m)	
$L_m \div W_m = L_a \div W_a$	(式Ⅱ-5)
ただし, L_m :本震の断層長さ (km)	
₩ _m :本震の断層幅 (km)	
L_a : 余震の断層長さ (km)	

W_a:余震の断層幅 (km)

番	発生日時	M_{j}	断層原点		上端深	長さL	幅₩	走向 θ	傾斜δ
号			北緯(゜)	東経(°)	さ(km)	(km)	(km)	(°)	(°)
1	2004/10/23 18:34	6.5	37.1942	138.893	3.3	24	15	34	W 56
2	2004/10/23 18:03	6.3	37.2603	138.954	0.2	20	13	34	W 56
3	2004/10/27 10:40	6.1	37.2125	139.008	2.9	17	11	34	W 56
4	2004/10/23 18:11	6.0	37.1814	138.807	3.3	15	10	34	W 56
5	2004/11/08 11:15	5.9	37.3300	139.011	0.2	14	9	34	W 56
6	2004/10/25 06:04	5.8	37.2700	138.926	7.2	13	8	34	W 56
7	2004/10/23 18:07	5.7	37.2919	138.845	7.6	12	7	34	W 56
8	2004/10/23 19:45	5.7	37.2403	138.855	4.6	12	7	34	W 56

表Ⅱ-9 2004 年新潟県中越地震の余震の断層モデル(3大余震:番号が太字)

3-2. 地表地震動の大きさの計算

地震調査研究推進本部(2006)の地表地震動の評価モデルに準拠して,距離減衰式を 用いて地表地震動分布を計算する.

具体的には,Kanamori (1977) による地震モーメントとモーメントマグニチュードの 関係式 (式II-6) からモーメントマグニチュードを求め、司・翠川 (1999)の式II-7に よりS波速度600m/s相当層上での最大速度を求める.これに、1.31倍を乗じて工学的基 盤 (S波速度400m/s 相当層)上の最大速度を求め、松岡・翠川 (1994)の表層地盤の速 度増幅度算定式 (式II-8) による基準地盤上面に対する地表の速度増幅度*ARV*を乗じて、 地表最大速度を計算する.なお、深さ30mまでの地盤平均S波速度AVS30は、藤本・翠川 (2003)の方法で推定する.

Log $M_0 = 1.5 \times M_w + 9.1$	(式Ⅱ-6)
ただし, M_o : 地震モーメント	
M _w :モーメントマグニチュード	
$\log PGV_{b600} = 0.58 \times M_{W} + 0.0038 \times H + d$	(式Ⅱ-7)

 $-1.29 - \log (X + 0.0028 \times 10^{0.50 \times M_W}) - 0.002 \times X$

ただし、*PGV_{b600}*:S波速度600m/s相当の硬質基盤上における最大速度 (cm/s)

- M_w :モーメントマグニチュード
- H : 震源深さ(km)
- d : 地震タイプ別の係数

内陸地殼内地震	プレート間地震	プレート内地震
0.00	-0.02	0.12

X : 断層最短距離 (km)

なお、地表地震動の計算対象とした市町村代表点を含む第3次メッシュの一覧を表 Ⅱ-10に示す。

現市区郡	旧市区郡	旧町村	メッシュコード
上越市	上越市		55385178
	東頸城郡	安塚町	55385355
		浦川原村	55385394
		大島村	55385480
		牧村	55384390
	中頸城郡	柿崎町	55387331
		清里村	55384296
		三和村	55385247
妙高市	中頸城郡	新井市	55384230
		妙高高原町	55382113
長岡市	長岡市		56381627
	栃尾市		56381779
	南蒲原郡	中之島町	56382750
	三島郡	越路町	56380672
		三島町	56381692
		与板町	56382644
		和島村	56382691
		寺泊町	56383671
	古志郡	山古志村	56380761
	北魚沼郡	川口町	55387628
	刈羽郡	小国町	55387576
三条市	三条市		56383766
	南蒲原郡	栄町	56383703
		下田村	56392082
柏崎市	柏崎市		56380444
	刈羽郡	高柳町	55386561
		西山町	56381553
小千谷市	小千谷市		55387673
加茂市	加茂市		56393093
十日町市	十日町市		55385650
	東頸城郡	松代町	55385468
		松之山町	55385408
	中魚沼郡	川西町	55385599
		中里村	55384565

表Ⅱ-10 計算対象とした代表点の3次メッシュ

現市区郡	旧市区郡	旧町村	メッシュコード
見附市	見附市		56382733
魚沼市	北魚沼郡	小出町	55386776
		堀之内町	55386794
		守門村	55397081
		入広瀬村	56390035
		湯之谷村	55396070
		広神村	55387708
南魚沼市	南魚沼郡	六日町	55384770
		大和町	55384770
		塩沢町	55384648
三島郡	三島郡	出雲崎町	56382546
南魚沼郡	南魚沼郡		55382695
中魚沼郡	中魚沼郡		55384512
刈羽郡	刈羽郡		56381409
新潟市	新潟市		56396092
	新津市		56395049
	中蒲原郡	亀田町	56396047
		横越町	56396058
		小須戸町	56395005
	西蒲原郡	巻町	56385700
新発田市	新発田市		56397246
村上市	西蒲原郡	分水町	56383657
		吉田町	56384720
燕市	燕市		56384704
西蒲原郡	西蒲原郡	弥彦村	56384637
東蒲原郡	東蒲原郡	阿賀町	56394316
佐渡市	佐渡市		57380229

3-3. 耐力残存率の被害予測結果への感度の確認

(1) 異なる耐力残存率の被害関数の作成

以下の被害関数を第2節と同様にして作成する.

- ・在来木造建物の一部損建物の耐力残存率を85%とした場合の被害関数
- ・在来木造建物の半損建物の耐力残存率を80%とした場合の被害関数
- ・鉄筋コンクリート造建物の一部損建物の耐力残存率を90%とした場合の被害関数
- ・鉄筋コンクリート造建物の半損建物の耐力残存率を85%とした場合の被害関数

(2)余震の影響を考慮した建物被害の計算手順

余震の影響を考慮した建物被害の算出手順は図 I-1による.

具体的には,例えばある3次メッシュの在来木造建物(1970年以前)の本震と3余震 の影響を考慮した建物被害は,以下の計算で算出する.なお,他の構造,年代区分でも 同様に計算する.また,余震発生順序としては,マグニチュードの大きい順に計算する.

①本震による建物被害の割合の計算

$p_3(0) = F_{0,3}(V_0) $ (11)	- 9)
$p_2(0) = F_{0,2}(V_0) - F_{0,3}(V_0) $ (II)	-10)
$p_1(0) = F_{0,1}(V_0) - F_{0,2}(V_0) $ (II)	(-11)
$p_0(0) = 1 - F_{0,1}(V_0) $ (I	(-12)
②余震kによる建物被害の割合の計算(k = 1, 2, 3)	
$p_{3}(k) = p_{0}(k-1) \times F_{0,3}(V_{k}) + p_{1}(k-1) \times F_{1,3}(V_{k}) $ (II)	-13)
+ $p_2(k - 1) \times F_{2,3}(V_k) + p_3(k - 1)$	
$p_{2}(k) = p_{0}(k-1) \times (F_{0,2}(V_{k}) - F_{0,3}(V_{k})) $ ($\exists I$	-14)
+ $p_1(k - 1) \times (F_{1,2}(V_k) - F_{1,3}(V_k)) + p_2(k - 1) \times (1 - F_{2,3}(V_k))$	
$p_1(k) = p_0(k-1) \times (F_{0,1}(V_k) - F_{0,2}(V_k)) $ ($\exists I$	i –15)
+ $p_1(k - 1) \times (1 - F_{1,2}(V_k))$	
$p_0(k) = p_0(k-1) \times (1 - F_{0,1}(V_k)) $ (II)	(-16)
ただし, F _{0,1} , F _{0,2} , F _{0,3} : 無被害建物の一部損以上, 全半損, 全損の被害関数	
F _{1,2} , F _{1,3} : 一部損建物の全半損, 全損の被害関数	
F _{2,3} :半損建物の全損の被害関数	
V _k : k 回目 (k = 1, 2, 3) の余震による地表最大速度.	
ただし, k = 0で,本震による地表最大速度	
$p_3(k)$, $p_2(k)$, $p_1(k)$, $p_0(k)$:	
k 回目 (k = 1, 2, 3) の余震後の全損, 半損, 一部損	,無被
害の建物の割合. ただし, k = 0で, 本震後の全損,	半損,
一部損,無被害の建物の割合を表す.	

また, 3次メッシュごとの全損, 半損, 一部損, 無被害の建物の割合に対する総合的 な指標^(注)として, L(*k*) (*k*=0, 1, 2, 3) を式Ⅱ-17で定義して用いる.

 $L(k) = p_3(k) \times 1.00 + p_2(k) \times 0.50 + p_1(k) \times 0.05 + p_0(k) \times 0 \quad (\exists \Pi - 17)$

(3) 耐力残存率の被害予測結果への感度の確認

在来木造建物と鉄筋コンクリート造建物の建物群のうち、それぞれ最も被害が発生し やすい1970年以前の建物群について、表Ⅱ-6の各ケースにおける余震の影響を考慮した 建物被害予測を行い、p₀(0)が99%以下となる代表点(1%以上の建物が一部損以上となる 代表点)でのL(*k*)の平均値等を表Ⅱ-11、表Ⅱ-12に示す.

表Ⅱ-11,表Ⅱ-12より,在来木造建物と鉄筋コンクリート造建物ではいずれも,一部 損の建物群の耐力残存率として別の値を設定すると,L(*k*)の平均値が数%変動するが, 影響は小さい.また,半損の建物群の耐力残存率については,別の値を設定しても, L(*k*)の平均値へほとんど影響しない.

C	1					
ケース	$\overline{P_3(k)}$	$\overline{P_2(k)}$	$\overline{P_1(k)}$	$\overline{P_0(k)}$	$\overline{L(k)}$	$\overline{L(k)} \div \overline{L(0)}$
本震 (k=0)	0.00310	0.03032	0.08353	0.88306	0.02243	100.0 %
ケース1 (k=3)	0.00651	0.05789	0.13940	0.79620	0.04243	189.2 %
ケース2 (k=3)	0.00677	0.05762	0.13940	0.79620	0.04256	189.7 %
ケース3 (k=3)	0.00732	0.06093	0.13554	0.79620	0.04456	198.7 %
ケース4 (k=3)	0.00748	0.06077	0.13554	0.79620	0.04464	199.0 %
ケース5 (k=3)	0.00766	0.06059	0.13554	0.79620	0.04473	199.4 %
ケース6 (k=3)	0.00799	0.06241	0.13340	0.79620	0.04586	204.5 %

表 Ⅱ-11 在来木造建物(1970年以前)の表 Ⅱ-6の各ケースの建物被害予測 (p₀(0)が99%以下の代表点での平均値)

表 Ⅱ-12 鉄筋コンクリート造建物(1970年以前)の表 Ⅱ-6の各ケースの建物被害予測 (p₀(0)が99%以下の代表点での平均値)

ケース	$\overline{P_3(k)}$	$\overline{P_2(k)}$	$\overline{P_1(k)}$	$\overline{P_0(k)}$	$\overline{L(k)}$	$\overline{L(k)} \div \overline{L(0)}$
本震 (k=0)	0.00141	0.01119	0.08365	0.90375	0.01119	100.0 %
ケース1 (k=3)	0.00290	0.02366	0.17053	0.80291	0.02325	207.8 %
ケース2 (k=3)	0.00291	0.02365	0.17053	0.80291	0.02326	207.9 %
ケース3 (k=3)	0.00305	0.02426	0.16977	0.80291	0.02367	211.5 %
ケース4 (k=3)	0.00308	0.02424	0.16977	0.80291	0.02368	211.6 %
ケース5 (k=3)	0.00311	0.02420	0.16977	0.80291	0.02370	211.8 %
ケース6 (k=3)	0.00332	0.02506	0.16871	0.80291	0.02429	217.1 %

⁽注) 3次メッシュの建物群について、地震保険の保険金額を同一と仮定したときの保険金額の合計に対 する保険金の合計の割合に対応する.第I章第2節注1を参照.